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Introduction
In terms of mortality rates, cancer ranks high among both sexes 

worldwide. The most common malignancies are breast cancer, which 
kills more women than any other illness and affects more women 
than any other disease in the world. Breast cancer may be detected 
early, which could lead to a survival rate of up to 80%, according to 
the WHO [1]. There are almost 1.7 million new instances of breast 
cancer identified each year, with 500,000 people losing their lives to 
the condition. Unfortunately, these figures might rise in the years 
to come [2, 3]. Dense breast tissue, a personal or family history of 
breast cancer, an older maternal age, the use of certain medications or 
procedures during pregnancy, drinking alcohol, and other behavioral 
variables are all potential risk factors for this kind of cancer [4]. The 
impact of certain factors is substantial, while that of others is rather 
little. Being a woman and getting older are unchangeable facts, but 
may lessen our risk of breast cancer by living a healthy lifestyle.

There are three main ways to detect breast cancer: a physical 
exam, a mammogram, or a biopsy. Professional radiologists are 
required to interpret the results of these diagnostic procedures; 
nonetheless, mammography is by far the most prevalent [5]. The 
problem with having several readings of the same mammography 
is that various radiologists get different conclusions. There is a 65% 

to 78% accuracy rate for mammography. The malignant nature of 
a tumour found by mammography may be determined by doing a 
biopsy [6]. Although the accuracy rate of a biopsy is almost 100%, the 
procedure is nonetheless invasive, expensive, time-consuming, and 
unpleasant [7]. These issues make it more challenging for clinicians 
to diagnose benign or malignant tumours. Because of these factors, 
ML  techniques have the potential to greatly impact the diagnostic 
process.

The application of AI techniques for the early diagnosis of breast 
cancer has recently increased. Learning theory is one kind of AI. 
For the most part, healthcare organisations have used ML and DL 
algorithms for breast cancer diagnosis [8]. The diagnostic accuracy 
of a patient utilised to be entirely dependent on the knowledge and 
skill of the doctor [9]. The accumulation of a physician’s expertise 
is the result of years of closely observing patients’ symptoms [10]. 
However, the accuracy is unreliable. It is now simpler to collect and 
store data because of the development of computer tools. Thus, the 
field of intelligent healthcare systems is dependable and beneficial. 
These technologies may assist doctors in diagnosing patients by 
providing them with relevant and reliable standards. Individuals 
might also benefit from these developments in terms of future health 
planning. This is how ML can take over the laborious physical tasks 
that healthcare workers face every day [11, 12].

Motivation and Contributions of the Study

This project aims to explore the use of ML  algorithms on the 
Breast Cancer Wisconsin (Diagnostic) dataset to assess predictive 
analytics’ potential in disease diagnosis. By determining which model, 
out of many options including FNN, RF, and Decision Tree, performs 
the best, the study significantly advances medical diagnosis. The key 
contributions are:

Collect the Wisconsin Diagnostic Breast Cancer dataset for breast 
cancer detection.

Applied essential data preprocessing steps, including the removal 
of duplicates, handling missing values, enhance data quality and 
model performance.
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Abstract
At now, breast cancer ranks second among women in terms of 

cancer-related deaths, making it a major epidemiological issue. The 
illness is not caught early enough, and half of the one million women 
diagnosed with breast cancer annually die from the condition. This 
research aims to predict the occurrence of breast cancer using 
various ML algorithms, including Feed forward Neural Network, 
Random Forest, and Decision Tree, with the goal of reducing the risk 
of death from this disease, which is a second most common cause of 
death among women globally. This research uses the Breast Cancer 
Wisconsin (Diagnostic) dataset to assess ML models that may diagnose 
breast cancer. The FNN model outperformed RF and DT, achieving the 
best overall performance with a precision, recall, and accuracy of 
97.18%. These results highlight the FNN’s robustness in minimising false 
positives and maximising true positives, making it a reliable tool for 
breast cancer diagnosis. To further enhance the accuracy of feature 
extraction and classification, future research may look at incorporating 
stronger deep learning models such transformer architectures and 
Convolution Neural Networks (CNNs). The model’s generalisability and 
clinical usefulness might be further validated by using bigger and more 
varied datasets.
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Applied standardisation to scale the features of the dataset, 
transforming them to have a mean of zero and unit variance.

Apply ML models like FNN, RF, DT for breast cancer detection.

Evaluated model performance employing accuracy, precision, 
recall, F1-score, and AUC, focusing on a comprehensive 
understanding of predictive capabilities, especially for imbalanced 
datasets.

Organization of the paper

Presented below is the outline of the paper: Section II finds 
research gaps and evaluates pertinent literature. Section III details 
the methodology, including data collection and the machine learning 
models used. Section IV presents the results of the experiments and 
the analysis of the model’s performance. Section V wraps up the 
report by reviewing the results and offering suggestions for further 
study.

Literature Review
They summarise the research on breast cancer prediction and 

categorisation in this section. Classification methods were the 
primary emphasis of the literature studied. Some reviews are: 

In this study, Khuriwal and Mishra (2018) proposed using the 
Wisconsin Breast Cancer database in an adaptive ensemble voting 
method for breast cancer diagnosis. This study aims to examine 
and explain how logistic and ANN algorithms, in conjunction with 
ensemble ML algorithms, produce improved results for breast cancer 
diagnosis, even when the number of variables is decreased. Wisconsin 
Diagnosis Breast Cancer was the dataset used in this research. When 
contrasted with similar literature. The Artificial Neural Network 
(ANN) technique achieved a 98.50% accuracy rate while utilising the 
logistic algorithm, according to an alternate ML methodology [13].

In this study, Gecer et al. (2018) provide a method for creating five 
diagnostic categories from breast biopsy whole slide images (WSI). 
A saliency detector using four fully convolutional networks trained 
with data extracted from pathologists’ screening records is an integral 
part of the WSI diagnosis process. After that, this detector will locate 
diagnostically important regions using multi-scale methods. Then, 
image patches are classified using a convolutional network based on 
whether they are invasive cancer, ductal carcinoma in situ, atypical 
ductal hyperplasia, proliferative changes, or non-proliferative. The 
network is trained using reference samples collected from consensus. 
At last, the saliency and classification maps are combined to label 
pixels and classify slides, respectively. Both the saliency detector and 
classifier networks outperformed rival algorithms in experiments, 
including 240 WSI. There was no significant difference between the 45 
pathologists’ opinions and a five-class slide-level accuracy55%. Breast 
cancer diagnostic visualisations using the learnt representations are 
also offered [14].

In this study, Chen et al. (2017), optimise techniques for ML to 
accurately forecast the onset of chronic diseases in populations prone 
to such outbreaks. A chronic illness of the brain, cerebral infarction, 
is the subject of our experiments. They present a novel multimodal 
illness risk prediction method that utilises hospital structured and 
unstructured data and is based on CNNs. No prior research in 

the field of medical big data analytics has, as far as they are aware, 
addressed both forms of data simultaneously. With a convergence 
time of only 94.8% and a prediction accuracy that surpasses that 
of most conventional methods, the proposed method significantly 
exceeds a CNN-based unimodal disease risk prediction algorithm 
[15].

In this study, Sahoo, Mohapatra and Wu (2016) a probabilistic 
data-gathering technique is created, and then the acquired data was 
analysed for correlation. Lastly, a stochastic prediction model is made 
to forecast the future health state of the most related folks based on 
their existing status. Extensive cloud-based simulations allow for the 
performance assessment of the suggested protocols; these simulations 
achieve a prediction accuracy of around 98% while reducing analysis 
time by 90% while maintaining 90% CPU and bandwidth utilisation 
[16].

In this study, Abdel-Zaher and Eldeib (2016) by combining the 
unsupervised route of a deep belief network with the supervised path 
of back propagation, a CAD technique for breast cancer diagnosis has 
been created. The architecture is a Backpropagation Neural Network 
(BPN-NN) trained using the Liebenberg-Marquardt learning 
function, with weights initially set using the Deep belief network 
(DBN-NN) route. They validated our method using the WBCD or 
Wisconsin Breast Cancer Dataset. A 99.68% accuracy rate from the 
classifier complex is encouraging when compared to other published 
research. As a breast cancer categorization model, the suggested 
approach works well. A number of train-test partitions were also 
considered when analysing the design [17].

In this study, Kandaswamy et al. (2016) are very interested in the 
use of state-of-the-art ML  techniques, such as DNNs, to categorise 
substances involved in chemical MOAs. To classify compounds, 
image-based profiling techniques have been used, sometimes in 
conjunction with feature reduction techniques like factor or PCA. 
This article demonstrates how to classify MOAs based on cell input 
properties independently of treatment profiles and feature reduction 
techniques. Our best understanding is that this is the first use of 
DNN using single-cell data in this field. Additionally, they employ 
DTL to reduce the computationally strenuous and time-consuming 
process of scouring the vast parameter space of a DNN. The outcomes 
indicate that this method results in a 30% increase in efficiency and a 
2% increase in accuracy[18].

Methodology
This investigation is designed to assess an efficacy of ML models in 

a detection of breast cancer by employing a Breast Cancer Wisconsin 
(Diagnostic) dataset. A following steps of research design are shown 
in Figure 1 flowchart. Data preprocessing is conducted to ensure the 
dataset is clean and ready for analysis, including removing duplicate 
entries and handling missing values. Feature scaling is implemented 
through standardisation to normalise the data, guaranteeing that 
all features contribute equitably to the model’s efficacy. The pre-
processed data was then split into training (80%) and testing (20%) 
sets. A variety of classification models, including FFNN, RF, and 
DT, were ultimately used. In order to determine the most successful 
model for breast cancer diagnosis, key measures such as F1-score, 
recall, accuracy, and precision were used to evaluate each prototype.
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Flowchart for Breast cancer Diagnosis

The following steps of a flowchart are briefly explained below:

Data Collection

This study makes use of the Wisconsin Breast Cancer (Diagnostic) 
Data Set, which is a dataset specifically designed for this purpose. 
There are 569 samples in the collection, and each sample has 32 
visually assessed atomic characteristics calculated from an image of a 
breast mass’s FNA. The distribution of benign (B) and malignant (M) 
tumours, as diagnosed, is displayed in (Figure 2).

This study makes use of the Wisconsin Breast Cancer (Diagnostic) 
Data Set, which is a dataset specifically designed for this purpose. 
There are 569 samples in the collection, and each sample has 32 
visually assessed atomic characteristics calculated from an image of a 
breast mass’s FNA. The distribution of benign (B) and malignant (M) 
tumours, as diagnosed, is displayed in (Figure 2).

Class Distribution of data

A class distribution analysis in (Figure 2) shows an imbalanced 
dataset, with the majority class (“B”) having significantly more 
instances than the minority class (“M”). This imbalance can lead to 
model bias, causing poor performance in a minority class. In these 
cases, standard accuracy may not be a reliable statistic. Thus, it’s better 
to use evaluation metrics like precision, recall, F1-score, and AUC, 
which provide a more realistic evaluation of the model’s performance 
on imbalanced datasets.

Correlation Matrix of Data

(Figure 3’s) heatmap shows the relationship between several 
attributes, probably taken from a dataset. A color intensity varies 
from dark purple to light pink, indicating the strength of correlation 
ranging from about 0.45 to 0.90. This kind of visualisation is useful 
for understanding how different variables in a dataset are related to 
each other, which is crucial for feature selection in model-building 
processes.

Data Preprocessing

Data preparation in the context of breast cancer detection 
utilising the Wisconsin dataset entails cleaning, organising, and 

standardising the data so that it may be used to develop accurate and 
trustworthy diagnostic models [19]. A vital part of data cleaning is 
removing duplicates, which makes sure that there aren’t any records 
that are both relevant and redundant, which could affect the accuracy 
of analyses and models. Key pre-processing steps are listed below:

Removing duplicate Entries

Data cleaning and preparation include removing duplicates 
to make sure the data is correct and dependable for modelling or 
analysis. 

Handling Missing values

Data points lacking a value for a particular variable in a dataset 
are called missing values [20]. Data analysis becomes much more 
difficult due to missing data points, which might cause results to be 
biased or erroneous.

Feature Scaling

Machine learning also makes use of the standard scaler, sometimes 

Figure 1

Figure 2

Figure 3
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known as standardisation, to scale features. Each feature is averaged 
to a zero-variance mean using this procedure [21, 3]. Although this 
method does not restrict the data to a certain time frame or alter its 
distribution, it does guarantee that the majority of data points will 
be close to 0. This indicates that no matter how much data is scaled, 
outliers will remain. Equation 1 shows the definition of standard 
scaling.

Where: 

xscaled = scaled sample point 

x = sample point 

x¯ = mean of the training samples 

σ = standard deviation of the training samples

Data Splitting

There are two subsets of the dataset: the training set and the testing 
set. The model is trained using the training set, and its performance 
is evaluated using the test set. The Data was divided into the 80:20.

Proposed Feed forward Neutral Network (FNN) Models

DNNs are computer models that use a layer-by-layer architecture 
and a large number of neurones (node) linked together by synaptic 
connections (weights) [22-24]. As a result, FNNs adhere to a 
particular architectural arrangement in which each layer’s nodes 
are linked to the layer below them via forward connections [25]. 
The limited number of neurones in a single internal hidden layer 
of a FNN allows it to approximate any continuous function with an 
activation function that is continuous and sigmoidal in nature. The 
connection weights provide input that a node in a FNN can process. 
It is possible to calculate the mathematical output yi (excitation) of a 
node (node i) as (2):

Where:

is a total incoming connection,

is an input, 

is a weight, 

is a bias, and 

(·) determines a range of possible values for the i-th node’s output 
amplitude, which is controlled by the activation function.

Evaluation Parameters

F1 score, recall, accuracy, and precision are important 
performance indicators for evaluating a model’s efficacy and helping 
to comprehend its predictive skills as well as finding places for 
development [26]. The equations of metrics, as shown in, are based 
on the fundamental measuring parameters of the confusion matrix, 
The following factors should be taken into account when measuring 
the parameters:

True Positive (TP): Correctly identify the presence of disease.

True Negative (TN): Correctly forecast the absence of disease.

False Positive (FP): Incorrectly forecast the disease is present 
when it’s not.

False Negative (FN): Fail to detect the disease when it is present.

Accuracy: Equation 3 offers the formula for calculating the 
percentage of true outcomes (including TN and TP) relative to a total 
number for gauging accuracy:

Precision: the proportion of states that were considered 
interesting (loaded in this case) and truly exist in that state for the 
purpose of measuring precision. In Equation 4:

Recall: the percentage of intriguing states accurately identified 
as such [25]. Another name for it is Recall or Sensitivity [27]. The 
formula for measuring recall is mentioned in Equation 5:

F1-score: a measure of both accuracy and memory that yields the 
proportion of correctly identified occurrences [28]. The formula for 
measuring F1-score are mentioned in Equation 6:

The Findings are obtained by evaluating the model’s performance 
using these performance metrics on the testing set.

Result Analysis and Discussion
Here, the outcomes for the various classification systems used in 

this study are examined. Our research employed ML techniques for 
an effective detection of breast cancer, specifically focusing on models 
such as FNN that compare with RF [29] and DT [30] shown in (Table 
III). An effectiveness of these algorithms was evaluated employing 
the Breast Cancer Wisconsin (Diagnostic) dataset. Important 
performance measures utilised to assess a model’s utility were F1-
score, recall, accuracy, and precision. (Table II). shows the results of 
the proposed model.

Bar Graph for Performance of FNN Model 

(Table II) and (Figure 4)  presents a performance of the FNN 
model for breast cancer prediction. The model achieved an accuracy 
of 96.49%, with both precision and recall scores reaching 97.18%. 
Additionally, the F1-score was also 97.18%, indicating a well-balanced 
performance according to both sensitivity and specificity. These 
results suggest that the FNN model is highly effective for predicting 
breast cancer, demonstrating strong classification performance across 
key metrics. [31 -40]

Figure 4
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Confusion matrix for FNN Model

In the (Figure 5) displays a confusion matrix for a FNN, presented 
in a 2x2 grid format. The matrix is labelled with “Actual” on a y-axis 
and “Predicted” on an x-axis, indicating two classes (0 and 1). The 
values within the matrix are: 41 TN and TP, representing correct 
predictions for classes 0 and 1, respectively. There are 2 FP and 2 FN, 
illustrating instances where the predictions did not match the actual 
classes. The matrix uses a colour gradient from light to dark blue to 
represent the range of values from low to high, accompanied by a 
colour bar on the right showing values from 0 to 60.

ROC curve of FNN Model

The (Figure 6) displays a ROC curve for a FNN. It plots the TPR 
against the FPR across a range of threshold values. The ROC curve, 
represented by a solid orange line, sharply rises close to a top-left 
corner of a graph, suggesting high model performance. The AUC 
is notably high at 0.96, indicating excellent discriminative ability. 
A dashed blue line, representing a random classifier’s performance, 
diagonally divides the plot, providing a baseline for comparison.

Precision-recall curve of FNN Model

The FNN model’s Precision-Recall curve in (Figure 7) shows strong 
performance with an AUC of 0.98, indicating good identification of 
true positives. Initially, precision is high, but it gradually drops as 
recall increases, typical of precision-recall curves. The sharp drop in 
precision suggests potential class imbalance, as the model sacrifices 
precision to capture more true positives.

(Table III).  above displays the outcomes of comparing a models’ 
performance. Among an algorithms tested, FNN performed best with 
an accuracy of 96.49%, surpassing both RF (94.11%) and DT (94.3%). 
The FNN’s remarkable recall and precision scores of 97.18% show that 
it is very good at reducing FP and increasing real positive detections. 
In comparison, the RF model demonstrated a precision of 94.97% 
and a recall of 94.11%, reflecting its effectiveness but slightly lower 
than that of the FNN. The Decision Tree model, while achieving a 
respectable accuracy of 94.3%, had lower precision at 91.0% and recall 
at 92.5%, suggesting it may face challenges in accurately identifying all 
positive cases. The FNN is the best model for detecting breast cancer 
overall, outperforming all other models in every metric, highlighting 
its potential to improve diagnostic precision in clinical settings [41-
57]. Based on results its evident that AI technology may improve 
clinical care, education and training. However, clear regulation and 
understanding by clinicians are needed. ML is a subfield of AI creating 
systems that can improve predictions and decisions by exposure to 

Table 1: provides an overview of different approaches to breast cancer classification and prediction, showcasing various methodologies, datasets, and performance 
outcomes.

References Methodology Dataset Performance Limitations & Future Work

Khuriwal and 
Mishra (2018)

Deep learning technology applied to 
WisconsinBreast CancerDataset

Wisconsin Breast Cancer 
Dataset 99.67% accuracy

Reduced variables may affect 
generalisation; exploring more variables 

for better performance.

Gecer et al. 
(2018)

Saliency detector with a pipeline of 
four fully convolutional networks; 

convolutional network for classification.

Whole Slide Images (WSI) of 
breast biopsies

Five-class slide-level 
accuracy of 55%, 
comparable to 45 

pathologists.

Limited accuracy for multi-class 
classification; explore improvement in 
saliency detection and classification.

Chen et al. (2017)
Modified prediction models using a 
CNN-based multimodal disease risk 

prediction algorithm

Real-life hospital data from 
central China (2013-2015)

94.8% accuracy, faster 
convergence than 

unimodal CNN-based 
algorithms.

Future work may involve enhancing 
data types and exploring other chronic 

diseases.

Sahoo, 
Mohapatra, and 

Wu (2016)

Probabilistic data collection and 
stochastic prediction model

Health data from cloud 
simulations

98% accuracy, 90% CPU 
and bandwidth utilisation

Limited by cloud simulation environment, 
future work could explore real-world 

deployment.

Abdel-Zaher and 
Eldeib (2016)

CAD scheme using deep belief network 
followed by a back-propagation neural 

network.

Wisconsin Breast Cancer 
Dataset 99.68% accuracy Limited test partitions; investigate broader 

dataset use for better validation.

Kandaswamy et 
al. (2016)

DNN with deep transfer learning for 
compound classification in chemical 

mechanisms of action.

Chemical data (MOA 
classification)

30% speedup, 2% 
accuracy improvement.

Focused on chemical mechanisms, not 
breast cancer; explore more diverse 

applications and models.

Summary of the related work on Breast cancer prediction using machine and deep learning technologies

Table 2:  Finding of Feedforward Neural Network (FNN) Performance for Breast 
Cancer Prediction

Performance Metrics Feed forward Neural Network (FNN) Model
Accuracy 96.49
Precision 97.18

Recall 97.18
F1-score 97.18

Figure 5
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data, thereby imitating human learning [58][59].The integration 
of advanced preprocessing techniques with machine learning 
significantly enhances the accuracy of mammography analysis, 
facilitating more precise differentiation between malignant and 
benign breast lesions [60]. Problems such as model generalization, 
bias, transparency, interpretability, accountability, and data privacy 
remain barriers for broad adoption AI in cardiology [61].Significant 
potential of AI-based algorithms in enhancing the accuracy of BC 
survival predictions. However, further exploration and research are 
essential to fully understand the true impact and effectiveness of these 
methods. [62].

V. Conclusion and Future Scope

Cancer is a major public health concern since it is a major 
killer and is on the rise around the world. Breast cancer ranks high 
among malignancies, particularly among females, according to 
current studies. Early detection can reduce treatment costs and 
improve survival rates for people with breast cancer. Nevertheless, 
the early diagnosis techniques used in modern healthcare systems 
have disadvantages. This study uses the Breast Cancer Wisconsin 
(Diagnostic) dataset to assess ML algorithms that can detect breast 
cancer. The results showed that Feedforward Neural Networks (FNN) 
were more effective than RF and DT models in detecting breast cancer. 
With an accuracy of 96.49% and high recall, precision, and F1-scores, 
the FNN proved robust in minimising false positives and maximising 
true positives. Nevertheless, the model’s generalisability could be 
compromised by obstacles including possible class imbalance and the 
dataset’s small size and lack of diversity. To tackle these issues, future 
research could use bigger and more varied datasets in conjunction 
with sophisticated deep-learning methods like CNNs or transformers. 
Additionally, integrating explainable AI methods could enhance 
model interpretability, facilitating its adoption in clinical settings for 
reliable and transparent diagnostic support.
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