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Abstract
This review is focused on the radioactive contamination in the Urals, 

where the consequences have been more serious in the long run than 
those after the Chernobyl accident. Mayak Production Association, 
constructed in 1948, has been the first plutonium manufacturing site 
in the Soviet Union. The difference between contaminations in the 
Urals and Chernobyl is that the latter was an accident, but the former 
- a radioactive contamination tolerated since 70 years with several 
accidents in between. The tendency to overestimate health-related 
risks from low-dose low-rate exposures has been noticed in Chernobyl-
related studies since approximately 1990 and in the research from 
the Urals since 2005. Cancer-related research has been commented 
previously. Selected cardio-, cerebro-vascular and ophthalmological 
conditions are discussed here. The rate of self-reporting correlates with 
dose estimates and awareness about radiation-related risks, the latter 
being associated with the work experience at the nuclear industry or 
residence in contaminated areas, and hence with the accumulated 
dose. Individuals informed of their higher doses would more often seek 
medical advice and on average more thoroughly examined. As a 
result, lens opacities and other pathological conditions are diagnosed 
in exposed people earlier than in the general population. This explains 
the dose-effect correlations reported for the incidence of cataracts 
but not for the frequency of cataract surgeries. Analogously, different 
pathological conditions are more often detected in exposed people. 
Results of bioassays are generally not supportive of harmful effects of 
low doses with possible exception of genetically modified animals. 
Mechanisms of damage at low doses remain speculative and the 
evidence inconclusive. The harm caused by anthropogenic radiation 
would tend to zero with a dose rate decreasing down to the level of 
natural background. Admittedly, irradiation may act synergistically with 
other noxious factors. Therefore, the optimal approach to the radiation 
protection is “as low as reasonably practicable”. Excessively strict 
regulations would cause some industries and modern technologies 
relocating to countries with less legalistic traditions. The environmental 
movement was founded on economic prosperity and complacency. 
When the global peace is threatened, the attitude should change.
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Introduction
Since many years we have tried to demonstrate that certain 

scientific writers and environmental campaigners act in accordance 
with the interests of governments selling petroleum and natural gas 
[1,2]. Most evident is this tendency in regard to ionizing radiation; 
while the overestimation of medical and environmental side effects 
of nuclear energy contributes to its strangulation [3], supporting 
appeals to dismantle nuclear power plants (NPPs). The dismantling 
of nuclear facilities is a complex affair; the work may span decades 
exceeding the building time [4]. The cost of dismantling each NPP 
may reach into billions of dollars [5]. The use of atomic energy for the 

electricity production is on the agenda today due to increasing needs 
of the growing humankind. The environmental damage is maximal 
for coal and oil, lower for gas and much lower for atomic energy - the 
cleanest and practically inexhaustible energy resource [3,6]. 

This review is focused on the radioactive contamination in the 
Urals, where the consequences have been more severe in the long 
run than those after the Chernobyl accident [1,2]. Mayak Production 
Association (MPA), constructed in 1948, has been the first plutonium 
manufacturing site in the former Soviet Union (SU). The dumping of 
radioactive materials into the Techa river, 1957 Kyshtym accident and 
dispersion by winds from the open repository lake Karachai (1967) 
led to exposures of the local population and some personnel. The East 
Urals Radioactive Trace (EURT) cohort includes people exposed after 
the Kyshtym accident. The difference between contaminations in the 
Urals and Chernobyl is that the latter was an accident, but the former 
- a radioactive contamination tolerated since 70 years with several 
accidents in between. 

The Chernobyl catastrophe contributed to the dissolution of SU 
with subsequent privatization of the state property. At least, disregard 
for written instructions and safety rules were among the causes of 
the Chernobyl accident [7-10]. The number of control rods in the 
reactor was only half the minimum required for safe operation [11]. 
An emergency power system had been shut off, which is forbidden 
during on-line operation [4]. Purportedly, this was done to carry out 
an experiment [10,11], which might have been a pretext used to cover 
sabotage. It is known that sabotage and stupidity often go hand in 
hand. When some wreckers are caught, they pretend not realizing 
possible consequences. The crew kept violating regulations until they 
had run the reactor into unstable state that caused loss of control [4]. 

The weightiest argument against NPPs is that they are potential 
war targets. Therefore, military threats are reasons against the use 
of nuclear power for electricity production. Escalation of military 
conflicts contributes to the maintenance of high fossil fuel prices. 
This might have been one of the motives of unleashing the Ukraine 
war. The Chernobyl accident was exploited for the same purpose [3], 
followed by antinuclear protests in many countries [12,13]. In the 
aftermath of Chernobyl, some citizens decided that it was time for 
nuclear moratorium [4,14]. 
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The tendency to overestimate health-related risks from low-
dose exposures has been noticed in Chernobyl-related studies 
since approximately 1990 [15-17] and in the research from the 
Urals since 2005; commented previously [1,2,18,19]. In earlier 
Russian publications no cancer incidence elevation was reported 
in populations with mean total exposures ≤0.5 Sv or among MPA 
employees in general [20-25]. The absolute risk of leukemia per 1 Gy 
and 10000 man-years was found to be 3.5-fold smaller in the Techa 
river cohort compared to the Life Span Study (LSS) of atomic bomb 
survivors in Hiroshima and Nagasaki. This was reasonably explained 
by a higher impact of the acute exposure compared to protracted 
or fractionated ones. Later on, the same scientists started claiming 
similar risks for cancer and other diseases in the exposed cohorts of 
the Urals and the LSS [26-28]. Along the same lines, an earlier study 
found a reduction of cancer mortality in the EURT cohort compared 
with the general population [23]. A review dated 2004 found the 
same level of both cancer-related and all-cause mortality in the EURT 
cohort and the control [21]. 

In a later report about the same population, the authors 
avoided direct comparisons but fitted the data into a linear model. 
Configurations of dose-response curves shown in this paper are 
inconclusive but the authors claimed an elevated cancer risk in the 
EURT population [29]. An unofficial directive was apparently behind 
this ideological shift noticed around the year 2005. Manipulations with 
statistics have been not unusual in the former SU [30]. Exaggeration 
of risks from low-dose low-rate exposures contributed to anti-nuclear 
resentments in other countries and strangulation of nuclear energy 
for the boosting of fossil fuel prices [1,2,18]. 

Cardio- and cerebro-vascular conditions

In earlier reports, an incidence elevation of cardio- and cerebro-
vascular conditions, if even found in MPA, Techa river and EURT 
populations, was not accompanied by a mortality increase [31-33]. 
This can be explained by a greater diagnostic effectiveness in people 
with higher doses, leading to a recording of mild and questionable 
cases. However, in a recent paper based on the MPA cohort, an 
increased excess relative risk (ERR) of death from ischemic heart 
disease was claimed for the dose range 5-50 mGy/year [34]. It seems 
that our preceding comments [1,2], though not cited, have been 
taken into account by some writers. The recent review by Koterov 
et al. [35] has apparently been influenced by our comments cited in 
[36] and commented [37]; trying, however, to shift the responsibility 
for biased information onto foreign experts. This can be illustrated 
by the following citation from the abstract: “In most sources, 2005-
2021 (publications by M.P. Little with co-workers, and others) reveals 
an ideological bias towards the effects of low doses of radiation … 
In selected M.P. Little and co-authors sources for reviews and meta-
analyses observed both absurd ERR values per 1 Gy and incorrect 
recalculations of the risk estimated in the originals at 0.1 Gy” [35]. Of 
note, Koterov [36] used mistranslations with a change of meaning in 
his Russian-language writings, commented in [37]. It must be stressed 
that relevant research with participation of Dr. Little [38-40] processed 
the data originating from Russian co-authors. In this connection, it 
should be agreed that the “Russian national mortality data is likely 
to be particularly unreliable, with major variations in disease coding 
practices across the country [41,42], and should therefore probably 

not be used for epidemiologic analysis, in particular for the Russian 
worker studies considered here [43-46]” [47]. 

Enhanced risks of cardiovascular diseases were claimed for 
Chernobyl, MPA, Techa river and EURT populations, where mean 
dose rates have been comparable with those from the natural radiation 
background. There are many populated areas in the world where dose 
rates from the natural background are ≥10-fold higher than the global 
average (2.4 mSv/year) with no health risks reliably proven [48]. The 
mean individual annual dose to residents of the Russian Federation 
(RF) in 2020 ranged from 2.47 mSv (Kamchatka) to 9.06 (Altai) with 
an average of 4.18 mSv [49]. In the above-mentioned cohorts from 
the Urals the doses have been protracted over decades: the MPA 
workers were first employed in the years 1948-1982. For example, 
the mean dose of gamma-radiation was 0.54 Gy in men and 0.44 
Gy among women in an MPA cohort study, where the incidence of 
arteriosclerosis in lower limbs correlated with the radiation dose [50]. 
The average doses in the Techa river cohort were 34-35 mGy while 
the follow-up was since the 1950s [51], so that the dose rates were 
compatible with those from the natural background. Apparently, the 
data from the Techa river cohort have not enough statistical power 
for a precise evaluation of dose-effect relationships. The authors 
themselves acknowledged that the risks for the doses ≤0.1 Gy may be 
lower than those calculated on the basis of a linear model [52]. 

In particular, the risk estimates by Azizova et al. [53] were 
significantly higher than those by other researchers [54]. Among 
members of the MPA cohort who received gamma-ray doses ≥0.1 Gy, 
the incidence of circulatory diseases was found to be higher than in 
people exposed to lower doses [55,56]. Cause-effect relationships are 
improbable at this level of exposure, considering the dose comparisons 
provided here. The UNSCEAR could not reach a final conclusion in 
regard to causality between exposures ≥1-2 Gy and cardiovascular 
diseases [57]. Apparently, the level 1-2 Gy is an underestimation as a 
result of the screening effect, selection, self-selection, other bias and 
confounding factors in the epidemiological research [1,2]. 

Dose levels associated with cardiac derangements in animal 
experiments and in humans after radiotherapy are much higher 
than averages in the cohorts discussed above [58-62]. Results of 
bioassays are generally not supportive of harmful effects of low doses, 
with possible exception of genetically modified animals [62,63]. In 
certain experimental and epidemiological studies, low doses were 
protective against cardiovascular and other adverse effects [61,64-
69]. In humans after radiotherapy, myocardial fibrosis developed 
after exposures ≥30 Gy. An increased risk of coronary disease has 
been noticed after radiotherapy with doses 7.6-18.4 Gy [59], which is 
higher than averages in the cohorts discussed above. 

It has been noted in the recent review that a “diagnosis (by a 
physician knowing the patient’s history) could vary with dose” [39]. The 
same has been noticed in [1,2,18]. Mild and borderline abnormalities 
are more often diagnosed in individuals with higher doses due to 
more thorough examinations and the people’s attention to their own 
health. The high incidence and mortality of cardiovascular diseases in 
studied populations [38] can be explained by the screening effect with 
recording of mild cases and unsubstantiated diagnoses post mortem. 
At least in the former SU, there is a tendency to use cardiovascular 
diseases as post mortem diagnoses in unclear cases [70]. 
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The unreliability of data on mild conditions can be confirmed by 
the greater risks of cerebro-vascular diseases at higher radiation doses 
in females than in males [71]. This agrees with the known tendency 
that women in RF care more than men about their health. Middle-
aged and elderly men are visibly underrepresented among visitors 
of healthcare institutions; hence the worldwide greatest sex gaps in 
the life expectancy: countries of the former SU are at the top of the 
list [72]. Accordingly, the diagnostics in women is on average more 
efficient. Therefore, the screening effect must be more pronounced in 
females than in males. 

Cataracts 

Similar tendencies have been noticed in regard to cataracts. 
Results of the studies reporting correlations between the cumulative 
radiation dose and cataract incidence among MPA workers [73-75] 
have been questioned [76,77]. The risk in higher dose groups starting 
from 0.25-0.50 Sv was found to be significantly higher than that in the 
control group having ≤0.25 Sv. The average doses were 0.54±0.061 Gy 
in males and 0.46±0.01 Gy in females [74]. Dose-effect relationships 
were claimed for cataracts; but the well-known association of the 
latter with diabetes mellitus was not confirmed [74-76]. This called 
into question the biological relevance of other results by the same 
researchers. Presumably after the critical comments [76], the data 
on diabetes did not reappear in a subsequent article by the same 
researchers [78]. Of note, there were no significant associations of the 
radiation dose with cataract surgeries [79]. The cataracts including 
mild cases not requiring surgery must have been diagnosed more 
frequently in individuals with higher doses due to an increased 
attention to their own health and/or attention on the part of medics. 
Earlier publications with participation of the same researchers 
reported that radiation-induced cataracts developed among MPA 
workers only after exposures ≥4 Gy [80]. A review of data from RF 
indicated that chronic exposures ≤ 2 Gy were not associated with 
cataracts [81]. 

In animal experiments, the doses were higher than the averages in 
Chernobyl, MPA and Techa river populations. Some experiments in 
rodents investigated low doses and suggested that genetic factors have 
an influence on the susceptibility to radiation-induced lens opacities 
[61,82,83]. According to the UNSCEAR, a minimum of 3-5 Gy is 
needed to produce significant opacities in animals which are, similar 
to humans, not prone to the cataract development. Higher doses 
are required if protracted or fractionated. The threshold for chronic 
exposures was supposed to be in the range 6-14 Gy [84]. Later on, 
lower thresholds and the no-threshold model have been suggested. 
Based predominantly on epidemiological studies, ICRP revised 
preceding recommendations and proposed a threshold of 0.5 Gy for 
low linear energy transfer radiation. However, some epidemiological 
studies have not supported this lower threshold for cataracts [61]. 
“A threshold for highly fractionated or protracted exposure was 
judged as <0.5 Gy mainly from one paper [85] on cataracts at 12-14 
years after exposure in Chernobyl clean-up workers” [86], whereas 
a possibility of “underestimation of uncertainties” in dosimetry was 
acknowledged [85]. A threshold for chronic exposures is uncertain 
for lack of reliable evidence [86]. 

In a study of radiologic technologists, the cumulative occupational 
exposure was associated with self-reported cataracts, but not with the 

cataract surgery. “The population of radiologic technologists… is 
medically literate” [87]. The self-reporting might have been related 
to a professional awareness associated with a longer work experience 
and hence with a cumulative dose. A similar pattern of significant 
ERR for cataract morbidity but not surgery has been found in MPA 
workers [78,79]. This agrees with the concept of a dose-dependent 
diagnostic efficiency with a registration in persons with higher doses 
of mild cases not requiring surgery. A significantly increased risk of 
the cataract surgery as a function of radiation dose has been reported 
only in LSS [88], where the effect of acute exposure could have been 
indeed significant. Of note, the reports by Azizova [78,79] on “a clear 
and significant increased ERR/Sv in females compared to males” 
among MPA workers were designated as “the most striking study 
observing sex effects relating to radiation-induced cataract incidence” 
[89]. The sex differences can be attributed to a gender-related attitude 
in the Russian healthcare. As mentioned above, middle-aged and 
elderly men visit health care centers (polyclinics) on the average less 
frequently than women. A higher frequency of cataracts in females 
than in males was found also in a study of the Techa river cohort [90]. 

Undoubtedly, ionizing radiation is a proven cataractogen; but 
doses and dose rates associated with risks, i.e. potential thresholds, 
should be further investigated. The number of studies that provide 
explicit biological and mechanistic evidence at doses ≤2 Gy is small 
[88,91]. Some recent research used genetically manipulated or mutant 
animals. Such data cannot be directly extrapolated to humans. 
Reliable information can be obtained in large-scale bioassays.

Discussion
Mechanisms of damage at low doses remain speculative and the 

evidence inconclusive [92,93]. Summarizing the above and previously 
published arguments [1,2], the harm caused by anthropogenic 
radiation would tend to zero with a dose rate decreasing down 
to a wide range level of the natural background. The damage and 
repair are normally in a dynamic balance. Accordingly, there must 
be an optimal exposure level, as it is for many environmental 
agents: visible and ultraviolet light, various chemical elements and 
compounds including products of water radiolysis [94]. Moreover, 
the evolutionary adaptation to a changing environmental factor 
would lag behind its current value. Natural background radiation 
has been decreasing during the life existence on the Earth [95]; so 
that there may be some adaptation to a higher background. There are 
many substances and physical factors in the environment that are 
toxic at some dose level. The lower anthropogenic radiation, the less 
would be its share compared to the natural radioactive background 
and other environmental factors [1,2]. There is considerable evidence 
in favor of hormesis [61,64-69,96-99]. Admittedly, irradiation may 
act synergistically with other noxa. Therefore, the petition to remove 
the phrase “As low as reasonably achievable” (ALARA) from the 
radiation safety regulations [100] is hardly justified, as exposures are 
unpredictable during a human life, while their effects may accumulate. 
However, the principle ALARP (as low as reasonably practicable) is 
more realistic and workable than the ALARA [101].

Nuclear power has returned to the agenda because of increasing 
global energy demands and declining fossil fuel reserves. NPPs emit 
virtually no greenhouse gases compared to fossil fuels [6]. Hopefully, 
nuclear fission will be replaced in the future by fusion, which is 
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intrinsically safer. The fusion offers a potential source of clean power 
generation with a plentiful supply of raw materials [5,102]. Durable 
peace and international cooperation are needed for construction 
of NPPs in optimally suitable places, notwithstanding national 
borders, considering all sociopolitical, geographic, geologic factors, 
attitude of workers and engineers to their duties (exemplified by the 
Chernobyl accident in the Introduction above). Considering potential 
vulnerability of large NPPs during armed conflicts, attention should 
be directed to small reactors, which are generally safer and have some 
economic advantages [103-107]. Small mobile reactors can be used 
also by the military. Nuclear power is the road to a carbon free future. 

The optimal approach to the radiation protection is to determine 
thresholds and establish regulations to ensure that doses are kept 
well below the thresholds [108], as low as reasonably practicable 
considering economical realities. Otherwise, some industries and 
modern technologies will flee to countries with less legalistic traditions 
i.e. disregard for laws and regulations [109]. The environmental 
movement was founded on economic prosperity and complacency. 
When prosperity and the global peace are threatened, the attitude 
must change [110]. 

According to a recent review, epidemiological data provide 
essentially no evidence of harmful effects at doses <100 mSv [111]. 
The value 200 mSv has been mentioned in some reviews as a level, 
below which a cancer risk elevation is unproven [112,113]. In the 
author’s opinion, the current safety regulations are exceedingly 
restrictive. Elevation of the limits must be accompanied by measures 
guaranteeing their observance. Strictly observed realistic safety 
norms would bring more benefit for the public health and economy 
than excessive restrictions that would be violated by some nations 
disregarding laws and regulations. 

Fossil fuels are used as a political weapon today [114]. Oil and 
natural gas will become increasingly expensive in the long run, 
contributing to excessive population growth in the producing regions 
and poverty elsewhere. Probably not all writers and green activists 
exaggerating medical and ecological risks from nuclear energy do 
realize that they serve the interests of fossil fuel producers. Many 
of them have good intentions; some are ideologically biased, serve 
certain companies or governments. Citizens should be aware that their 
best intentions are exploited to disadvantage their own countries. The 
weightiest consideration against NPPs is that they are potential targets 
during armed conflicts. By analogy with the Chernobyl accident, the 
war damage and shutdown of the Zaporozhie NPP (the largest NPP 
in Europe) enhances demands for oil and gas. Apparently, one of the 
motives to unleash the war in Ukraine, of the militarist rhetoric and 
threats to use nuclear weapons [115,116], has been the strangulation 
of nuclear energy and boosting fossil fuel prises. 

Conclusion
Studies of human populations exposed to low-dose low-rate 

ionizing radiation, though important, will hardly add much reliable 
information on dose-effect relationships. Some reviews analyzed 
together papers of different quality and reliability. The inter-study 
heterogeneity makes assessment of risks problematic [92,117]. 
Finally, political and economical interests sometimes overweighed 
scientific objectivity [1,2]. Screening effect, selection and ideological 

biases will contribute to appearance of new reports on enhanced risks 
from a moderate anthropogenic increase of the radiation background, 
which would not prove causality. Reliable results can be obtained in 
lifelong animal experiments. The life duration is a sensitive endpoint 
attributable to radiation exposures [118], which can measure net 
harm, if any, from low-dose exposures. 

Certain writers and environmental campaigners, exaggerating 
medical and ecological consequences of the anthropogenic increase in 
the radiation background, serve the interests of fossil fuel producers. 
Some of them may have good intentions; others are ideologically 
biased or have a conflict of interest. Tendentiousness is recognizable 
in reports aimed at the strangulation of nuclear energy and boosting 
fossil fuel prices. A safe implementation of nuclear power should be 
managed by an authority based in developed countries. The economy 
must become independent from politically unpredictable nations 
[119], including those producing fossil fuels. 
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